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Abstract: Mangrove ecosystems represent important carbon sinks, known as blue carbon. They 

promote climate balance by regulating greenhouse gas concentrations. Methods that use 

allometric equations, remote sensing and machine learning have been increasingly employed to 

quantify biomass. Thus, the objective of this study was to estimate the spatial distribution of 
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above-ground plant biomass (AGB) present in mangroves of the Parnaíba River Delta, located 

in northeastern Brazil. For this, 27 plots were sampled, each measuring 200 m². In each plot, 

data of diameter at breast height and height of each individual, and AGB was estimated using 

allometric equations. The spatial distribution of AGB was mapped by means of modeling, and 

it was possible to extract and select spectral variables obtained from images from the Landsat 

8-9 and Sentinel-2 satellites. For the predictive analysis, the algorithms were used: Multiple 

Linear Regression, XGBoost, Random Forest, Cubist, Earth and Support vector machine 

(linear, radial and polynomial). It was observed that the mangrove vegetation of the species 

Rhizophora mangle obtained the highest AGB, with 790 Mg ha-¹, and the model that best fitted 

the prediction to was XGB, but the best fit was obtained for the dry period, with R²= 0.93, 

RMSE = 66.74 Mg ha-1 and MAE of 49.42 Mg ha-1. The MSI sensor also showed a very strong 

fit for the XGB model, with R² = 0.92 Mg ha-1, RMSE = 64.02 Mg ha-1 and MAE of 46.31 

Mg ha-1, indicating lower errors, probably due to its higher spatial resolution. 

Keywords: allometry; blue carbon; carbon stock; ecological stress; modeling. 

 

MAPEAMENTO DA BIOMASSA ACIMA DO SOLO POR SENSORIAMENTO 

REMOTO E APRENDIZADO DE MÁQUINA EM MANGUEZAIS DO DELTA DO 

RIO PARNAÍBA, NORDESTE DO BRASIL 

 

Resumo: Os ecossistemas de mangue representam importantes sumidouros de carbono, 

conhecidos como carbono azul. Promovem o equilíbrio climático regulando as concentrações 

de gases com efeito de estufa. Métodos que utilizam equações alométricas, sensoriamento 

remoto e aprendizado de máquina têm sido cada vez mais empregados para quantificar a 

biomassa. Assim, o objetivo deste estudo foi estimar a distribuição espacial da biomassa vegetal 

acima do solo (BGA) presente em manguezais do Delta do Rio Parnaíba, localizado no 

Nordeste do Brasil. Para isso foram amostradas 27 parcelas, cada uma medindo 200 m². Em 

cada parcela foram estimados os dados de diâmetro à altura do peito e altura de cada indivíduo, 

e AGB por meio de equações alométricas. A distribuição espacial do AGB foi mapeada por 

meio de modelagem, sendo possível extrair e selecionar variáveis espectrais obtidas a partir de 

imagens dos satélites Landsat 8-9 e Sentinel-2. Para a análise preditiva foram utilizados os 

algoritmos: Regressão Linear Múltipla, XGBoost, Random Forest, Cubista, Terra e Máquina 

de vetores de suporte (linear, radial e polinomial). Observou-se que a vegetação de manguezal 

da espécie Rhizophora mangle obteve o maior AGB, com 790 Mg ha-¹, e o modelo que melhor 

se ajustou à previsão foi o XGB, mas o melhor ajuste foi obtido para o período seco, com R²= 

0,93, RMSE = 66,74 Mg ha-1 e MAE de 49,42 Mg ha-1. O sensor MSI também apresentou 

ajuste muito forte para o modelo XGB, com R² = 0,92 Mg ha-1, RMSE = 64,02 Mg ha-1 e 

MAE de 46,31 Mg ha-1, indicando menores erros, provavelmente devido à sua maior resolução 

espacial. 

Palavras-chave: alometria; carbono azul; estoque de carbono; estresse ecológico; modelagem. 

 

MAPEO DE LA BIOMASA AÉREA MEDIANTE TELEDETECCIÓN Y 

APRENDIZAJE AUTOMÁTICO EN MANGLARES DEL DELTA DEL RÍO 

PARNAÍBA, NORESTE DE BRASIL 

 

Resumen: Los ecosistemas de manglares representan importantes sumideros de carbono, 

conocidos como carbono azul. Promueven el equilibrio climático regulando las concentraciones 

de gases de efecto invernadero. Para cuantificar la biomasa se han utilizado cada vez más 

métodos que utilizan ecuaciones alométricas, teledetección y aprendizaje automático. Así, el 
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objetivo de este estudio fue cuantificar y estimar la distribución espacial de la biomasa vegetal 

aérea (BGM) presente en los manglares del delta del río Parnaíba, ubicado en el noreste de 

Brasil. Para ello se muestrearon 27 parcelas de 200 m² cada una. En cada parcela se estimaron 

datos de diámetro a la altura del pecho y altura de cada individuo, y AGB mediante ecuaciones 

alométricas. Se mapeó la distribución espacial del AGB mediante modelación y fue posible 

extraer y seleccionar variables espectrales obtenidas de imágenes de los satélites Landsat 8-9 y 

Sentinel-2. Para el análisis predictivo se utilizaron los siguientes algoritmos: Regresión Lineal 

Múltiple, XGBoost, Random Forest, Cubista, Tierra y Máquina de Vectores de Soporte (lineal, 

radial y polinómico). Se observó que la vegetación de manglar de la especie Rhizophora mangle 

obtuvo el mayor AGB, con 790 Mg ha-¹, y el modelo que mejor ajustó la predicción fue el 

XGB, pero el mejor ajuste se obtuvo para el período seco, con R² = 0.93, RMSE = 66.74 Mg 

ha-1 y MAE de 49.42 Mg ha-1. El sensor MSI también mostró un ajuste muy fuerte para el 

modelo XGB, con R² = 0,92 Mg ha-1, RMSE = 64,02 Mg ha-1 y MAE de 46,31 Mg ha-1, lo 

que indica errores menores, probablemente debido a su mayor ajuste espacia resolución. 

Palabras clave: alometría; carbono azul; stock de carbono; estrés ecológico; modelación. 

 

INTRODUCTION 

 
Coastal environments are areas of relevant environmental fragility, where the elements 

that make up the functioning and stability of the systems respond to a complex dynamic, 

resulting from the interaction of continental and coastal agents. These environments are home 

to a set of ecosystems of high environmental relevance that end up performing extremely 

important functions, whether of ecological, social or economic nature. The mangrove, for 

example, is a coastal ecosystem that is located in a zone of transition between the terrestrial and 

marine environments and that provides favorable conditions for the development of many 

animal species, besides being considered an important transformer of nutrients in organic matter 

(Pinto et al., 2017).  

Mangroves also represent important carbon sinks, known as blue carbon (Kuwae et al. 

2022; Tang et al., 2016). In other words, this vegetation plays an important role in sequestering 

carbon from the atmosphere and can regulate greenhouse gas concentrations. 

With the increase in carbon levels in the atmosphere, it has become necessary to 

understand the capacity of mangroves to store carbon, in order to bring alternatives to the 

climate imbalance caused in the environment (Adame et al., 2015; Donato et al., 2011). 

Although studies on this topic are still limited, especially with regard to the behavior of carbon 

in mangrove vegetation in the most diverse biomes, some studies seek to understand the 

occurrence of this dynamic. To this end, strategies have been developed to overcome these 

obstacles, applying methodologies with the use of allometric equations, empirical studies, and 

simple and complex models associated with sensing through machine learning (ML).  
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The establishment of allometry is of fundamental importance, as it contributes to the 

floristic knowledge and evaluation of the plant species present, thus providing elements for 

developing the ordering of quantitative aspects of the vegetation that is still little known, 

especially the mangrove vegetation (Arruda; Daniel, 2007).  

In addition, geotechnologies and the use of modeling, which are important tools to 

facilitate environmental analysis, have been bringing relevance in the analysis and mapping of 

mangrove areas, enabling the generation of products with good cartographic accuracy and 

precision. Different parametric and non-parametric statistical models have been used to predict 

mangrove biomass. However, as pointed out by Tian et al. (2022), the prediction precision of 

non-parametric approaches is often better because they do not make assumptions about the 

distribution of the data, as is the case with many ML methods.  

The ML algorithm is characterized by making predictions on data through training and 

making independent decisions based on the construction of a model based on a set of selected 

predictors. Models such as XGB, RF and CB are based on a decision tree and are widely used 

in AGB estimation.  

 MLR is a statistical technique that simultaneously analyzes more than one variable 

related to an object of study. The ET model, according to Kuhn and Johnson (2013), seeks to 

model the nonlinear relationships between predictors and continuous responses that do not 

require specifications of the exact form of nonlinearity before its application to training data, 

while the SVM model tries to find hyperplanes that separate the data and, according to dos 

Santos (2018), this algorithm differs from others by not directly estimating probabilities but the 

class of the response of interest for a new observation. 

These models use terrestrial data and allometric equations to develop biomass estimates 

to train those models that best fit, based on remote sensing data (Jachowski et al., 2013; Wu et 

al., 2016; Pham et al., 2018; Meier et al., 2018; Li et  al., 2017; Li et al., 2020; Ghosh; Behera, 

2021; Siqueira et al., 2021).  

Given the above, the study raises the hypothesis that the application of machine learning 

algorithms to remote sensing data significantly improves the accuracy of mangrove vegetation 

biomass estimates compared to traditional field data collection methods. Thus, knowing that 

biomass estimation studies help in better understanding and finding solutions to climate issues, 

the present study aims to estimate the spatial distribution of AGB present in the mangroves of 

the Parnaíba River Delta Environmental Protection Area, located on the coast of northeastern 

Brazil, through the use of machine learning. 
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MATERIAL AND METHODS 

 

Characterization of the study area 

 

The area under study corresponds to the mangroves present in the Parnaíba River Delta 

Environmental Protection Area (PRD EPA), which is located in the lower Parnaíba sub-basin. 

The PRD EPA comprises the extreme west coast of Ceará, portions along the entire length of 

the coast of Piauí and the extreme east coast of Maranhão. It occupies an approximate area of 

313,809 hectares, with a perimeter of 472.80 km, entirely covering the municipalities of 

Cajueiro da Praia (PI) and Ilha Grande (PI) and partially covering the municipalities of Parnaíba 

(PI), Luís Correia (PI), Barroquinha (CE), Chaval (CE), Água Doce do Maranhão (MA), 

Araioses (MA), Paulino Neves (MA) and Tutóia (MA) (Figura 1). 

 

Figure 1 – Map of location map of mangroves in the Parnaíba River Delta Environmental 

Protection Area 

 
Fonte: Os autores (2024). 

 

In addition to the conservation unit (CU) of the PRD EPA, in the study area there is also 

an overlap of three other CUs: EPA of Foz do Rio Preguiças – Pequenos Lençóis, a CU of the 

Maranhão state (State Decree 11.899 of June 11, 1991); Parnaíba River Delta Marine Extractive 

Reserve (RESEX) (Federal Decree of November 16, 2000); and the Ilha do Caju Private Natural 
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Heritage Reserve (RPPN) (Ordinance 96-N-DOU 214-E -0 9/11/1999 - section/pg. 1/26) 

(ICMBIO, 2020). 

The PRD EPA was created through the Federal Decree of August 28, 1996 and is under 

the responsibility of the Chico Mendes Institute for Biodiversity Conservation (ICMBIO). 

According to Guzzi (2012), this area is characterized by having a mosaic of ecosystems 

intersected by bays and estuaries, in addition to being a dynamic fluvial-marine region, formed 

by the ecological tension between Cerrado, Caatinga and marine systems. In addition, it has a 

strong Amazonian influence in its portion of Maranhão (west) and the semi-arid region in Ceará 

(east). Almost 25% of its territory is made up of jurisdictional waters and with a population of 

approximately 360,000 inhabitants (ICMBIO, 2020). 

Considering the hydrological, geological, pedological and geomorphological factors, 

there are four landscape units within the EPA area: dune field, fluvial-marine plain, river plain 

and coastal tablelands. The areas of the fluvial-marine plain are responsible for transporting 

matter and energy carried by the rivers, tides, and rainfall that are so important for that system 

(da Silva, 2020) 

Although the area under study is located in representative areas of Cerrado and Caatinga 

vegetation, it has a continuous system of mangroves, which help in the control of coastal erosion 

and in the stabilization of fine sediments, hence reducing the capacity and competence of rivers 

in the transport of sediments. The main mangrove species observed in the EPA area are: red 

mangrove (Rhizophora mangle), white mangrove (Laguncularia racemosa), button mangrove 

(Conocarpus erectus), ‘siriba’ or ‘sereiba’, black mangrove or ‘siriba’ mangrove and white 

‘siriba’ (Avicennia germinans and Avicennia schaueriana) (Guzzi, 2012; Andrade et al., 2014; 

Flora do Brasil, 2020; Nascimento, 2021). 

Abreu et al. (2019) point out that the EPA area has a varied rainfall regime with isohyets 

between 1000 and 1600 mm per year, which goes from January to May. From August to 

November, lower rainfall indices are recorded, demonstrating that the monthly rainfall regime 

has a unimodal distribution with minimum rainfall in August and maximum in April, and the 

main atmospheric system acting in the region is the Intertropical Convergence Zone (ITCZ). 

The main economic activity carried out in the study area is subsistence fishing, which involves 

the collection of fish, crabs, shrimps, oysters and shellfish, family farming, animal husbandry 

and the extractivism of seeds and fruits. It is worth mentioning that the EPA is also part of the 

Route of Emotions tourist itinerary, which also covers the Jericoacoara National Park, in Ceará, 

and the Lençóis Maranhenses National Park, in Maranhão. 
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Choice of sampling points to define the plots 

 

The sampling points were defined based on a random stratified strategy, considering the 

areas with greater representativeness in relation to vegetation structure. Maps were produced 

using images from the orbital sensors of the Landsat-8 OLI (Operational Land Imager) and 

RapidEye images as a way to better visualize the geographical area that corresponds to the EPA 

area. To choose the points, the of mangrove vegetation was also spatialized by interpreting the 

normalized difference vegetation index (NDVI), using the same strategy adopted by Portela et 

al. (2020), sampling plots with variability for NDVI. Thus, 27 plots were installed (Figura 2), 

each measuring 200 m² (10x20), and all of which are representative of the mangrove vegetation. 

 

Figure 2 - Map of distribution of plots in mangrove areas of the Parnaíba River Delta 

Environmental Protection Area 

 
Fonte: Os autores (2024). 

 

Procedures for field determination of AGB data 

 

To determine the above-ground plant biomass (AGB), a survey on the characteristics of 

the vegetation was carried out through a population census, collecting information regarding 

the height of trees and diameter at breast height (DBH) of each individual. The AGB of the 
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mangrove area of the EPA was calculated based on allometric equations for living vegetation 

(Table 1), according to the species identified and adopted in other similar studies (Kauffman & 

Donato, 2012; Portela et al., 2020; Nascimento, 2021). 

 

Table 1 -  Allometric equations used to determine living plant biomass in different 

mangrove species 
SPECIES EQUATIONS REFERENCES 

Laguncularia recemosa Biom (kg)= 0,1023 X DBH 2.5 (Fromard et al., 1998) 

Avicennia sp. Biom (kg)= 0,14 x DBH 2.4 (Fromard et al., 1998) 

Conocarpus erectus Biom (kg)= 0,1023 X DBH 2.5 (Fromard et al., 1998) 
Rizophora sp. In (Biom. (kg)) = 14,867663 = 

0,5132 In (área basal 2 x H) 

(Santos et al., 2017) 

Other species (DBH 3≥30 cm) Biom (kg) = 0,1730 x DBH,2,2950 (Lima Júnior et al. 

2014) 

 

To analysis the AGB of dead species standing or fallen within the plots, the equation 

proposed by Fundación Solar (2000) was used in an adapted form. The litter biomass was 

determined by the direct method (Fundación Solar, 2000), where, in each plot, a 0.3 m² 

circumference was randomly thrown three times, collecting all the material contained within it. 

 

AGB estimation by remote sensing and machine learning 

 

The analysis of spatial distribution of AGB by remote sensing was carried out using the 

method proposed by Lu et al. (2005) and Lima Júnior (2014) with adaptations, with extraction 

and selection of spectral variables from images from the Landsat 8-9 OLI sensor, orbit/point 

218/62 and the Sentinel-2 satellite. These data were correlated with the field biomass estimates, 

because according to Naessens et al. (2012), in the process of calibration and validation of the 

data, the model used is confronted with the field data and the prediction can be confirmed.  

In the case of the Landsat 8-9 images, they were downloaded from the USGS (United 

States Geological Survey) website and correspond to the dry season on 09/15/2018 and the 

rainy season on 03/22/2023. It is important to highlight that both data were collected at Level-

2, taking into account the occurrence of atmospheric correction. Acquisition and pre-processing 

of the Sentinel-2/MSI images were carried out on the GEE (Google Earth Engine) platform, 

where the chosen historical series dates from August 1 to November 30, 2021, also with 

atmospheric correction. Processing of the images and obtaining of the final products from the 

methodological procedures were carried out using the following software programs: ESRI 

ArcGIS® 10.3, QGIS and R Studio version 4.3.2 (R Core Team, 2020).  
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After acquisition of the images, the bands B1, B2, B3, B4, B5, B6 and B7 (OLI) were 

grouped in a single file called “Stack” in the statistical program R to perform a composition of 

bands. The same procedure was performed for bands B2, B3, B4, B5, B6, B7, B8A, B11 and 

B12 of Sentinel-2. From the bands, the following spectral indices were calculated based on the 

literature by George et al. (2018), Tran, Ruth and Zuh (2022), Santos (2018) and Ramírez 

(2015) serving as input data to estimate biomass: RVI, NDVI, EVI, NDWI, SAVI, GNDVI, 

MNDWI, CTVI, CLAY and IRON (Table 2). 

 

Table 2 - Representation of the equations used to determine spectral indices 

ÍNDICE EQUATION REFERENCES 

Ratio Vigor Index (RVI) 
𝑅𝑉𝐼 =

𝑁𝐼𝑅

𝑅𝐸𝐷
 

Pearson e Miller (1972) 

Normalized Difference 

Vegetation Index (NDVI) 
NDVI = 

𝑁𝐼𝑅−𝑅𝐸𝐷

𝑁𝐼𝑅+𝑅𝐸𝐷
 Rouse et al., (1973) 

Soil-adjusted Vegetation 

Index (SAVI) 
SAVI= 

𝑁𝐼𝑅−𝑅𝐸𝐷

𝑁𝐼𝑅+𝑅𝐸𝐷+𝐿
 *(1 + L) Huete (1988) 

Enhanced Vegetation 

Index (EVI) 
EVI = G(

𝑁𝐼𝑅−𝑅𝐸𝐷

𝑁𝐼𝑅+𝐶1∗𝑅𝐸𝐷−𝐶2∗𝐵𝐿𝑈𝐸+𝐿
) Huete et al., (1997) 

Normalized difference 

water index (NDWI) 
NDWI = 

𝐺𝑅𝐸𝐸𝑁−𝑁𝐼𝑅

𝐺𝑅𝐸𝐸𝑁+𝑁𝐼𝑅 
 Gao (1996) 

Green Normalized 

Difference Vegetation Index 

(GNDVI) 

GNDVI = 
𝑁𝐼𝑅−𝐺𝑅𝐸𝐸𝑁

𝑁𝐼𝑅+𝐺𝑅𝐸𝑁
 Gitelson et al., (1996) 

Modified Normalized Difference 

Water Index 

(MNDWI) 

MNDWI = 
𝐺𝑅𝐸𝐸𝑁−𝑆𝑤𝑖𝑟2

𝐺𝑅𝐸𝐸𝑁+ 𝑆𝑤𝑖𝑟2
 Xu (2006) 

Corrected Transformed 

Vegetation Index (CTVI) 
CTVI = 

(𝑁𝐷𝑉𝐼+0,5)

|𝑁𝐷𝑉𝐼+5|
∗ √⌈𝑁𝐷𝑉𝐼 + 5⌉ Perry e Lautenschlager 

(1984) 

Clay Minerals (CLAY) CLAY = 
𝐵𝐴𝑁𝐷𝐴 6

𝐵𝐴𝑁𝐷𝐴 7
 Sabins (1997) 

Iron Oxide (IRON) IRON = 
𝑅𝐸𝐷

𝐵𝐿𝑈𝐸
 Sabins (1997) 

Nota: NIR: Banda infravermelha próxima; RED: Faixa vermelha; GREEN: Faixa verde; BLUE: Faixa azul; 

Swir2: Faixa infravermelha de onda curta (1400-1800nm); G: Fator de ganho = 2,5; L: Fator de correção para 

solo, onde foi utilizado o valor = 0,25 no índice SAVI e o valor = 1 no índice EVI; C1 e C2: Coeficientes de 

ajuste para efeito de aerossol atmosférico, onde C1 = 6 e C2 = 7,5; As bandas 6 e 7 no cálculo de Clay podem 

variar dependendo do satélite (Landsat 8-9 ou Sentinel-2). Fonte: Adaptado de Portela, 2019; Amorim, 2019. 

 

To calculate these indices, it was necessary to install the raster package through the 

install.packages (“raster”) tool and use R software. For the predictive analysis, the following 

machine learning algorithms were used: Multiple Linear Regression (MLR), Random Forest 

(RF), XGBoost (XGB), Cubist (CB), Earth (ET) and Support vector machine (SVM – linear, 

radial and polynomial), adapted from the literature, in order to test and investigate which model 

had the best prediction performance. 

In addition, it is worth mentioning that the models were tested using all variables (bands 

and indices) and all algorithms were implemented through the Caret package. Prediction error 
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was calculated by the leave-one-out cross-validation (LOOCV) methodology, as employed by 

Jachoswi et al. (2013) and Selvaraj and Pérez (2023). 

The performance of the estimates, i.e., how the algorithm is performing, was evaluated 

using validation measures recommended by Whang et al. (2016) such as the coefficient of 

determination (R2), root mean squared error (RMSE) and mean absolute error (MAE). In 

addition to these statistical metrics, the evaluation of the models was performed through the 

visual analysis of the scatter plots between the observed AGB values and the values predicted 

by the models. After that, AGB was mapped for the entire study area, for models with better 

performance and using R software. 

 
RESULTS AND DISCUSSION 

 
Estimation of mangrove biomass using field data and allometry 

 

For the estimation of AGB in the field, through the survey of the species carried out in the 27 

plots, it was possible to observe the presence of 626 individuals, distributed in four genera and five 

species of mangrove: Rhizophora spp., Laguncularia racemose, Conocarpus erectus, Avicennia 

germinans and Avicennia schaueriana. It is worth pointing out that these last two species were not 

differentiated through taxonomic study and, for the estimation of AGB, they were considered only as 

Avicennia spp. The same occurs with the genus Rhizophora spp. 

In some plots, 23 individuals of species such as: Indigofera sp; Mauritia flexuosa L., Euterpe 

oleracea Mart. and Genipa americana L. Totaling 649 individuals. It is also important to highlight that 

the survey covers an area of 5,400 m² of a total of approximately 413 km2 of mangrove areas included 

in the PRD APA (MapBiomas Project, 2021). Through the (Figura 3) it is possible to observe the 

biomass value found in each of the sampled plots. 

Figure 3 shows a minimum of 8 Mg ha-1, a maximum of 789 Mg ha-1 and a mean of 258 

Mg ha-1. Similar data were also found by Jachowski et al. (2013), who estimated the plant 

biomass of mangroves in southwestern Thailand and found an average value of 250 Mg ha-1. 

These data are higher than those reported by Wong et al. (2020), who found average AGB of 

about 197 Mg ha-1 in northern Malaysia.  
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Figure  3 - Distribution of above-ground biomass stock observed in the field in different plots. Plot of 

Rizophora sp. - 1, 2, 3, 4, 5, 8, 9, 11, 12, 16, 17, 21, 23; Plots of Rizophora sp. and Avicennia spp. – 7, 

10, 13, 14, 19, 20; Plots of Rizophora sp. and L. racemosa - 15, 22; C. erectus plots - 6, 24, 25; 
Avicennia spp. - 18; Plot of L. racemosa and Avicennia spp. – 26. 

 
 

Fonte: Os autores (2024). 

 

(2018) in their studies concluded that a semi-arid community in northwestern Australia 

contained an average of 70 Mg ha-1 of AGB. Tian et al. (2022), when evaluating the AGB of 

mangroves in a subtropical estuary of the Maoling River, Guangxi, China, observed that the 

AGB of the invasive mangroves showed a high spatial distribution pattern in the northwest and 

low spatial distribution pattern in the southeast, and its value ranged from 7 Mg ha-1 to 114 Mg 

ha-1, with an average of 26 Mg ha-1. Fujimoto et al. (2022), in a study conducted in the mangrove 

forests of Micronesia, observed that, in the Rhizophora stylosa community characterized by 

stilt roots, the highest AGB was estimated at 895 Mg ha-1, a value considered the highest of all 

existing data from terrestrial survey in the tropics. Through this study it can be observed that 

tropical areas also present relevant values and averages of AGB in mangroves. 

In Brazil, estimates of blue carbon stocks do not include the entire area of mangroves 

present, but studies such as the one conducted by Bernadino et al. (2024) reveal an estimate of 

AGB in a portion of the mangrove vegetation in the Amazon ranging from 29 to 335 Mg C ha-

1. Kalffman et al. (2018), in turn, found a mean AGB value of 290 Mg ha-1 for the Amazon 

region. Santos and Beltrão (2019) estimated and compared AGB on Ajuruteua Island, 

Bragança, PA, in 2008 and 2018, and found values of approximately 451 Mg ha-1 for 2008 and 

290 Mg ha-1 for 2018, which points to a reduction of approximately 35.7% in biomass between 

2008 and 2018.  
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Portela et al. (2020) point out that the evergreen mangrove vegetation in the Parnaíba 

River Delta had the highest mean value for plant biomass, 517.43 Mg ha-1. Braga et al. (2024), 

when estimating AGB in the mangrove forest of the Pacoti River, in the State of Ceará, found 

that 16.60 tons were stored in the 1,119 plants analyzed. The species with the highest amount 

of biomass was Rhizophora mangle, which accounted for about 71% of the total mass found. 

 The plot under study with the highest value of AGB (plot 11) has 12 predominant 

individuals of the same genus (Rizophora sp.), mean diameter of 35 cm and mean height of 

13.33 m, indicating greater biomass in species that have larger diameters, as observed in the 

boxplot (Figura 4) through the maximum, minimum, mean and standard deviation values 

presented. This result was also observed by Pinto et al. (2017), who analyzed the sequestration 

of atmospheric carbon in the mangrove forest of the EPA of Serra do Guararú, in São Paulo, 

and pointed out that the carbon stored in the form of biomass is directly proportional to DBH.  

Similar data were also presented by Fontoura et al. (2017), who observed biomass 

variations between the compartments of the mangrove vegetation, according to the increase in 

DBH. In the study area, the number of individuals and height were also important attributes in 

the composition of AGB. 

Figure 4 - Boxplot of different values of maximum, minimum, mean and standard deviation in the 

mangrove plots of Parnaíba River Delta Environmental Protection Area. (a) DHP values, (b) height 

values, (c) biomass values 

 

https://periodicos.ufpi.br/index.php/revistaequador


 

Revista Equador (UFPI), Vol. 14, Nº 1, Ano 2025, p. 301-327. 

Home: https://periodicos.ufpi.br/index.php/revistaequador 
 

  

 

 

 
Fonte: Os autores (2024). 

 

By observing these data, it was possible to confirm that the highest biomass estimates 

are associated with Rizophora sp. and Avicennia spp., since both reached values above 700 Mg 

ha-1. These species, represented in plots 11 and 19, also had in some individuals DBH of 77.67 

cm for Rizophora sp. (plot 11) and maximum height of the individuals of 20 m and DBH of 

80.85 cm for Avicennia spp. (plot 19), with mean of 34.14 cm, maximum height of 40 m reached 

in their individuals and mean of 24.23 m (Figura 5). 
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Figure 5 - A: Representation of the species Rizophora sp.; B: Representation of Avicennia 

spp 

                   

Fonte: Os autores (2024). 

 

Plots 25, 15 and 24 were the ones with the lowest biomass values compared to the others, 

respectively 8 Mg ha-¹, 23 Mg ha-1 and 38 Mg ha-1. These plots, in turn, have a mean DBH 

ranging from 7.41 cm to 8 cm and mean height ranging from 4 m to 9.22 m. Two of these plots 

(24 and 25) together with plot 6 are representative of C. erectus and have mostly crooked and 

thin trunks and branches (Figura 6). 

 

Figura 6 - Diameter measuring the height of the breast of the representative portion of Conocarpus 

erectus; B: fruit of the species Conocarpus erectus 

         
Fonte: Os autores (2024). 

 

C. erectus has greenish flowers and gray or brown bark. They occupy elevated portions 

of the terrain and are rarely hit by the tides. They are also considered species that have the 
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highest resistance among mangrove woods and were widely used for the manufacture of 

shipbuilding parts and firewood production (ICMBIO, 2018). 

It is worth mentioning that, in the study area, these species were only found in 

mangroves that comprise the East side of the PRD EPA area, with plots 6 and 24 installed in 

the municipality of Cajueiro da Praia, PI, and plot 25 in the municipality of Barroquinha, CE. 

In mangrove forests in southeastern Mexico, AGB was higher in this species (C. erectus) 

(253.18±32.17 Mg·ha-1) and lower in other species, such as A. germinans (161.93±12.63 Mg 

ha-1). This occurred because the species C. erectus grew on more elevated terrains in the region, 

where soils were richer in nutrients (Santos et al. 2014). 

 Avicennia spp. only occurred predominantly in plot 18 and had AGB value of 79 Mg 

ha-1, while L. racemosa vegetation was mixed with other species, in three plots (15, 22 and 26), 

thus contributing to the biomass estimate.  

Based on the survey carried out and the species found, it can be highlighted that the 

species R. mangle is responsible for 75% of the AGB produced, followed by Avicennia spp. 

with approximately 19%, C. erectus with 4% and L. racemosa with 2%. In addition, the 

variation of biomass in the analyzed plots is directly linked to the changes in the variables 

involved in the allometric equations presented in this study. Therefore, it can be seen that the 

oscillation of biomass throughout the area is also linked to the different species of mangrove 

and their characteristics.  

 

Estimation of mangrove biomass using Landsat 8-9/OLI and Sentinel-2/MSI remote 

sensing images and machine learning. 

 

For biomass estimation using Landsat 8-9 and Sentinel-2 remote sensing images, the 

biomass obtained in the field was considered a dependent variable and the reflectance values 

(bands) and spectral indices derived from the images were considered independent variables. 

Once all the covariates were selected, it was possible to evaluate the most important ones 

presented by the ML models in R software. When the most important variables for the model 

resulted in better validation, these models were presented (Table 3). 
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Table 3 – Erros estatísticos de predição calculados para cada modelo representando a AGB de 

bosques de mangue da APA do Delta de Parnaíba, PI com imagens do Landsat 8-9 e Sentinel-2 

Machine 

Learning Model  

Variables  

explanatory 

RMSE 

(Mg/ha) 

MAE 

(Mg/ha) 

R² Máx. Mín. 

                         Landsat -8/ OLI 

Random Forest B2 + NDWI+ B1 + B3 

+ IRON+B4 

107.24 87.36 0.86 522.43 73.33 

Random Forest All 110.37 88.25 0.86 520.10 80.51 

XGBoost All  66.74 49.42 0.93 677.29 20.04 

Regressão Linear 
Multipla 

All 134.31 89.92 0.61 676.97 -2.16 

Cubist All 207.3 147.3 0.16 287.44 75.29 

Regresão Earth All 196.46 157.06 0.17 312.64 -27.2 

SVM Linear All 195.77 129.29 0.20 441.53 -13.83 

SVM Radial All 169.98 96.94 0.48 453.63 30.07 

SVM Polinomial All 206.65 144.43 0.18 266.39 30.12 

                      Landsat - 9/ OLI   

Random Forest B2+B3+B4+B5+IRON

+CLAY 

107.86 84.7 0.87 - - 

Random Forest All 115.47 93.57 0.85 502.55 82.14 

XGBoost All 84.20 60.24 0.88 639.16 2.21 

Regressão Linear 

Multipla 

All 134.78 97.42 0.61 652.42 -50.41 

Cubist All 200.86 148.98 0.17 310.35 105.63 

Regresão Earth All 197.56 159.44 0.16 306.56 -1.29 

SVM Linear All 197.46 130.66 0.22 368.41 -65.06 

SVM Radial All 152.21 87.92 0.56 - - 

SVM Polinomial All 201.51 132.33 0,20 - - 

                       Sentinel -2 /MSI   

Random Forest B5 +B11+ IRON+ 

EVI+B12+ B8A 

100.09 71.87 0.86 552.63 56.2 

Random Forest All 99,32 69.51 0.88 539.07 61.29 

XGBoost All 71.89 51.58 0.92 695.23 32.65 

XGBoost B5 + B4 + B6 + B11 + 

B3 + IRON 

 

64.02 46.31 0.92 716.53 41.17 

Fonte: Os autores (2024). 
 

Knowing that ML algorithms are used with the objective of estimating and minimizing 

the reducible error, it can be observed in Table 2 that the best model trained for AGB estimation, 

using all covariates, was that obtained with XGB during the dry season with Landsat-8 images, 

showing very good values of validation and maximum and minimum. XGB was also the best 

model when using Landsat-9 data from the rainy season, with very good performance.  

In relation to the MSI sensor, the XGB model also showed a very strong performance, 

using all the variables and also taking into account the important variables. In the selection, 

lower MAE and RMSE values were obtained when compared to the OLI sensor, which can be 

explained by the higher spatial resolution compared to the Landsat 8-9 images (10 m and 30 

m); however, all predictions produced strong fits, emphasizing the quality of ML modeling 

(Figura 7 and Table 3). 
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Figure 7 - Validação cruzada dos valores de AGB usando diferentes dados de sensores remoto 

              

 
Fonte: Os autores (2024). 

 

The distribution of most of the points around the trend line confirms the ability of the 

XGB model to predict with a high degree of accuracy the AGB of the mangroves in the study 

area. However, our results showed only a slight difference in prediction performance between 

the XGB and RF models. RF had excellent performance and fit in the class of very strong fit, 

which can also be confirmed by the studies conducted by Askne et al. (2017) in northern 

Sweden, Tian et al. (2021) in the Beibu Gulf, David et al. (2022) in Chobe National Park, 

Botswana, and Fararoda et al. (2021) in forests of India.  

Li et al. (2020), when estimating the biomass of subtropical forests in Hunan Province, 

China, observed that after performing parameter fitting, there was a significant effect on the 

performance of the XGB algorithm compared to RF and after fitting, the R2 of the XGB model 

achieved the best results (R² = 0.75).  

Tian et al. (2021) used eight ML models to estimate the AGB of different mangrove 

species in the Beibu Gulf and also compare their accuracy. The best fit model found by the 
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authors, as well as in the study carried out, was also the XGB, with R2 = 0.83 and RMSE = 

22.76 Mg ha-1, followed by the RF model (R2 = 0.78, RMSE = 25.51 Mg ha-1). 

Luo et al. (2021), when comparing the performance of different combinations of 

resource selection methods and algorithms, observed that the XGB model also showed an 

excellent performance in the estimation of AGB, with RMSE of 28.81 Mg ha-1.  

It is also worth mentioning that the other models presented in Table 1 were tested, but 

were not successful, showing low coefficient of determination with the remote sensing data 

variables for the Landsat 8-9 images and increasingly high errors, providing no explanations 

for the research data, except for the MLR model, which had R² = 0.61 in the Landsat 8-9 images 

with a moderate fit. Thus, due to the poor performance of the other models, only the XGB and 

RF models were fitted for the Sentinel-2 images.  

The results also reveal that, among the fitted models, the correlation between AGB and 

the oxide index indicated that more hydromorphic soils, with few oxides, result in higher values 

of AGB. For Sentinel-2, band 5 (Vegetation Red Edge 1) played a major role in the estimation 

of AGB, which was also identified by (Astola et al., 2019).  

Da Silva et al. (2021), when analyzing the potential of Sentinel-2 images in estimating 

the biomass of Tectona grandis L.f. in the Western Amazon, found that Sentinel-2 images are 

accurate and useful for monitoring forest biomass. Pandit et al. (2018), when estimating AGB 

in protected forest areas in Nepal, pointed out that in these areas the problem of multispectral 

data saturation due to the large amount of biomass is common, but the Sentinel-2 data were able 

to overcome this problem due to the high spatial resolution and red-edge bands of the MSI 

sensor, which reinforces its capacity and effectiveness in biomass estimates. 

Dang et al. (2019), when estimating AGB in Yok Don National Park, Vietnam, using 

ML, observed that in validation, the RF model developed with 11 variables was able to predict 

AGB with R² = 0.81, RMSE = 36.67 Mg ha-1 and RMSE = 19.55% using both Landsat and 

Sentinel-2 images. 

The results found in the present study demonstrated exactly the same; the two sensors 

acted with great potential, and in the dry season this estimate is more representative, with this 

model, since, according to (Fitz, 2008), the decrease in the amount of water causes degradation 

of the photosynthetic pigments, making the leaf less likely to absorb electromagnetic radiation, 

which in turn will result in increased reflectance values by the sensors. Thus, as the moisture of 

the leaf decreases, the reflectance power in the infrared increases, proving the results found.  
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The map (Figura 8) shows the final result of the estimation of AGB of the PRD EPA 

mangrove through the Landsat 8-9 and Sentinel-2 satellites. On the maps, it is possible to 

observe variability of biomass and spatial distribution.  

Thus, it can be observed that for the two sensors and seasons (dry and rainy) there is a large 

spatial correlation that coincides, where areas that correspond to the northwest of the 

municipality of Araioses, MA, northwest region of the municipality of Ilha Grande, PI, areas 

close to the Parnaíba River and a good part of the mangroves located in Barroquinha, CE, are 

the ones with the highest estimates of AGB, since the indices and bands show a higher spectral 

reflectance in the near-infrared region, resulting in a greater interaction of the incident energy. 

 

Figure 8 - AGB estimation map in APA DPHB mangrove areas using different sensors and machine 
learning. (a): XGBoost model using Landsat-8 imagery, (b): XGBoost model using Landsat-9 

imagery, (c): XGBoost model using Sentinel-2 images 
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Fonte: Os autores (2024). 

 

In addition, most of them are areas close to the mouth of rivers, where there is a large 

input of sediments and consequent production of nutrients that can contribute to a higher 

production of AGB. It can be observed that the model brought an estimate very close to the 

observed value, predicting biomass values of approximately 800 Mg ha-¹. 
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CONCLUSION 

 

The estimation and spatialization of AGB in the mangroves of the study area, through 

remote sensing and machine learning, was efficient and indicated low uncertainty in the 

estimates.  

The fitted models indicated good performances of OLI and MSI sensors in AGB 

estimation. The XGB model fitted better to the data from the two sensors, but obtained better 

accuracy during the dry season, with R² = 0.93, RMSE = 66.74 Mg ha-¹ and MAE = 49.42 Mg 

ha-¹. It is worth pointing out that the Landsat-9 and Sentinel-2 images also produced excellent 

results, indicating a strong fit according to the literature, which highlights the quality that can 

be obtained from freely available images. Due to the higher spatial resolution of Sentinel-2, this 

sensor can be considered as the most suitable and reliable in AGB mapping. 

The RF model also showed very strong fit results, especially when using Sentinel-2 

images, representing the best fit of this model, with R² = 0.88 when using all variables, which 

can probably be explained by its better spatial resolution compared to the Landsat images.  

These results suggest that the XGB and RF regression models generated have a satisfactory 

capacity to predict the AGB of the Parnaíba River Delta EPA, providing the basis for the 

planning of the relevant forestry decision-making departments. 
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