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Abstract: Mangrove ecosystems represent important carbon sinks, known as blue carbon. They
promote climate balance by regulating greenhouse gas concentrations. Methods that use
allometric equations, remote sensing and machine learning have been increasingly employed to
quantify biomass. Thus, the objective of this study was to estimate the spatial distribution of
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above-ground plant biomass (AGB) present in mangroves of the Parnaiba River Delta, located
in northeastern Brazil. For this, 27 plots were sampled, each measuring 200 m2. In each plot,
data of diameter at breast height and height of each individual, and AGB was estimated using
allometric equations. The spatial distribution of AGB was mapped by means of modeling, and
it was possible to extract and select spectral variables obtained from images from the Landsat
8-9 and Sentinel-2 satellites. For the predictive analysis, the algorithms were used: Multiple
Linear Regression, XGBoost, Random Forest, Cubist, Earth and Support vector machine
(linear, radial and polynomial). It was observed that the mangrove vegetation of the species
Rhizophora mangle obtained the highest AGB, with 790 Mg ha-t, and the model that best fitted
the prediction to was XGB, but the best fit was obtained for the dry period, with R?= 0.93,
RMSE = 66.74 Mg ha-1 and MAE of 49.42 Mg ha-1. The MSI sensor also showed a very strong
fit for the XGB model, with R? = 0.92 Mg ha-1, RMSE = 64.02 Mg ha-1 and MAE of 46.31
Mg ha-1, indicating lower errors, probably due to its higher spatial resolution.

Keywords: allometry; blue carbon; carbon stock; ecological stress; modeling.

MAPEAMENTO DA BIOMASSA ACIMA DO SOLO POR SENSORIAMENTO
REMOTO E APRENDIZADO DE MAQUINA EM MANGUEZAIS DO DELTA DO
RIO PARNAIBA, NORDESTE DO BRASIL

Resumo: Os ecossistemas de mangue representam importantes sumidouros de carbono,
conhecidos como carbono azul. Promovem o equilibrio climatico regulando as concentracdes
de gases com efeito de estufa. Métodos que utilizam equacfes alométricas, sensoriamento
remoto e aprendizado de maquina tém sido cada vez mais empregados para quantificar a
biomassa. Assim, 0 objetivo deste estudo foi estimar a distribuicdo espacial da biomassa vegetal
acima do solo (BGA) presente em manguezais do Delta do Rio Parnaiba, localizado no
Nordeste do Brasil. Para isso foram amostradas 27 parcelas, cada uma medindo 200 m2. Em
cada parcela foram estimados os dados de didmetro a altura do peito e altura de cada individuo,
e AGB por meio de equacdes alométricas. A distribuicdo espacial do AGB foi mapeada por
meio de modelagem, sendo possivel extrair e selecionar variaveis espectrais obtidas a partir de
imagens dos satélites Landsat 8-9 e Sentinel-2. Para a analise preditiva foram utilizados o0s
algoritmos: Regressdo Linear Mdltipla, XGBoost, Random Forest, Cubista, Terra e Maquina
de vetores de suporte (linear, radial e polinomial). Observou-se que a vegetacdo de manguezal
da espécie Rhizophora mangle obteve o maior AGB, com 790 Mg ha-%, e 0 modelo que melhor
se ajustou a previsao foi 0 XGB, mas o melhor ajuste foi obtido para o periodo seco, com R2=
0,93, RMSE = 66,74 Mg ha-1 e MAE de 49,42 Mg ha-1. O sensor MSI também apresentou
ajuste muito forte para 0 modelo XGB, com R2 = 0,92 Mg ha-1, RMSE = 64,02 Mg ha-1 e
MAE de 46,31 Mg ha-1, indicando menores erros, provavelmente devido a sua maior resolucéo
espacial.

Palavras-chave: alometria; carbono azul; estogue de carbono; estresse ecolgico; modelagem.

MAPEO DE LA BIOMASA AEREA MEDIANTE TELEDETECCION Y
APRENDIZAJE AUTOMA'I:ICO EN MANGLARES DEL DELTA DEL RIO
PARNAIBA, NORESTE DE BRASIL

Resumen: Los ecosistemas de manglares representan importantes sumideros de carbono,
conocidos como carbono azul. Promueven el equilibrio climéatico regulando las concentraciones
de gases de efecto invernadero. Para cuantificar la biomasa se han utilizado cada vez mas
métodos que utilizan ecuaciones alométricas, teledeteccion y aprendizaje automatico. Asi, el
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objetivo de este estudio fue cuantificar y estimar la distribucion espacial de la biomasa vegetal
aerea (BGM) presente en los manglares del delta del rio Parnaiba, ubicado en el noreste de
Brasil. Para ello se muestrearon 27 parcelas de 200 m? cada una. En cada parcela se estimaron
datos de didmetro a la altura del pecho y altura de cada individuo, y AGB mediante ecuaciones
alométricas. Se mapeo la distribucion espacial del AGB mediante modelacion y fue posible
extraer y seleccionar variables espectrales obtenidas de iméagenes de los satélites Landsat 8-9 y
Sentinel-2. Para el andlisis predictivo se utilizaron los siguientes algoritmos: Regresion Lineal
Mudltiple, XGBoost, Random Forest, Cubista, Tierra y Méaquina de Vectores de Soporte (lineal,
radial y polindmico). Se observo que la vegetacion de manglar de la especie Rhizophora mangle
obtuvo el mayor AGB, con 790 Mg ha-1, y el modelo que mejor ajusto la prediccién fue el
XGB, pero el mejor ajuste se obtuvo para el periodo seco, con Rz = 0.93, RMSE = 66.74 Mg
ha-1 y MAE de 49.42 Mg ha-1. El sensor MSI también mostré un ajuste muy fuerte para el
modelo XGB, con R? = 0,92 Mg ha-1, RMSE = 64,02 Mg ha-1 y MAE de 46,31 Mg ha-1, lo
que indica errores menores, probablemente debido a su mayor ajuste espacia resolucién.

Palabras clave: alometria; carbono azul; stock de carbono; estres ecologico; modelacion.

INTRODUCTION

Coastal environments are areas of relevant environmental fragility, where the elements
that make up the functioning and stability of the systems respond to a complex dynamic,
resulting from the interaction of continental and coastal agents. These environments are home
to a set of ecosystems of high environmental relevance that end up performing extremely
important functions, whether of ecological, social or economic nature. The mangrove, for
example, is a coastal ecosystem that is located in a zone of transition between the terrestrial and
marine environments and that provides favorable conditions for the development of many
animal species, besides being considered an important transformer of nutrients in organic matter
(Pinto et al., 2017).

Mangroves also represent important carbon sinks, known as blue carbon (Kuwae et al.
2022; Tang et al., 2016). In other words, this vegetation plays an important role in sequestering
carbon from the atmosphere and can regulate greenhouse gas concentrations.

With the increase in carbon levels in the atmosphere, it has become necessary to
understand the capacity of mangroves to store carbon, in order to bring alternatives to the
climate imbalance caused in the environment (Adame et al., 2015; Donato et al., 2011).
Although studies on this topic are still limited, especially with regard to the behavior of carbon
in mangrove vegetation in the most diverse biomes, some studies seek to understand the
occurrence of this dynamic. To this end, strategies have been developed to overcome these
obstacles, applying methodologies with the use of allometric equations, empirical studies, and

simple and complex models associated with sensing through machine learning (ML).
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The establishment of allometry is of fundamental importance, as it contributes to the
floristic knowledge and evaluation of the plant species present, thus providing elements for
developing the ordering of quantitative aspects of the vegetation that is still little known,
especially the mangrove vegetation (Arruda; Daniel, 2007).

In addition, geotechnologies and the use of modeling, which are important tools to
facilitate environmental analysis, have been bringing relevance in the analysis and mapping of
mangrove areas, enabling the generation of products with good cartographic accuracy and
precision. Different parametric and non-parametric statistical models have been used to predict
mangrove biomass. However, as pointed out by Tian et al. (2022), the prediction precision of
non-parametric approaches is often better because they do not make assumptions about the
distribution of the data, as is the case with many ML methods.

The ML algorithm is characterized by making predictions on data through training and
making independent decisions based on the construction of a model based on a set of selected
predictors. Models such as XGB, RF and CB are based on a decision tree and are widely used
in AGB estimation.

MLR is a statistical technique that simultaneously analyzes more than one variable
related to an object of study. The ET model, according to Kuhn and Johnson (2013), seeks to
model the nonlinear relationships between predictors and continuous responses that do not
require specifications of the exact form of nonlinearity before its application to training data,
while the SVM model tries to find hyperplanes that separate the data and, according to dos
Santos (2018), this algorithm differs from others by not directly estimating probabilities but the
class of the response of interest for a new observation.

These models use terrestrial data and allometric equations to develop biomass estimates
to train those models that best fit, based on remote sensing data (Jachowski et al., 2013; Wu et
al., 2016; Pham et al., 2018; Meier et al., 2018; Li et al., 2017; Li et al., 2020; Ghosh; Behera,
2021; Siqueira et al., 2021).

Given the above, the study raises the hypothesis that the application of machine learning
algorithms to remote sensing data significantly improves the accuracy of mangrove vegetation
biomass estimates compared to traditional field data collection methods. Thus, knowing that
biomass estimation studies help in better understanding and finding solutions to climate issues,
the present study aims to estimate the spatial distribution of AGB present in the mangroves of
the Parnaiba River Delta Environmental Protection Area, located on the coast of northeastern

Brazil, through the use of machine learning.
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MATERIAL AND METHODS
Characterization of the study area

The area under study corresponds to the mangroves present in the Parnaiba River Delta
Environmental Protection Area (PRD EPA), which is located in the lower Parnaiba sub-basin.
The PRD EPA comprises the extreme west coast of Ceard, portions along the entire length of
the coast of Piaui and the extreme east coast of Maranhdo. It occupies an approximate area of
313,809 hectares, with a perimeter of 472.80 km, entirely covering the municipalities of
Cajueiro da Praia (PI) and Ilha Grande (PI) and partially covering the municipalities of Parnaiba
(PI), Luis Correia (P1), Barroquinha (CE), Chaval (CE), Agua Doce do Maranhdo (MA),
Araioses (MA), Paulino Neves (MA) and Tutoia (MA) (Figura 1).

Figure 1 — Map of location map of mangroves in the Parnaiba River Delta Environmental
Protection Area
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Fonte: Os autores (2024).

In addition to the conservation unit (CU) of the PRD EPA, in the study area there is also
an overlap of three other CUs: EPA of Foz do Rio Preguigas — Pequenos Lencdis, a CU of the
Maranhdo state (State Decree 11.899 of June 11, 1991); Parnaiba River Delta Marine Extractive
Reserve (RESEX) (Federal Decree of November 16, 2000); and the Ilha do Caju Private Natural
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Heritage Reserve (RPPN) (Ordinance 96-N-DOU 214-E -0 9/11/1999 - section/pg. 1/26)
(ICMBIO, 2020).

The PRD EPA was created through the Federal Decree of August 28, 1996 and is under
the responsibility of the Chico Mendes Institute for Biodiversity Conservation (ICMBIO).
According to Guzzi (2012), this area is characterized by having a mosaic of ecosystems
intersected by bays and estuaries, in addition to being a dynamic fluvial-marine region, formed
by the ecological tension between Cerrado, Caatinga and marine systems. In addition, it has a
strong Amazonian influence in its portion of Maranh&o (west) and the semi-arid region in Ceara
(east). Almost 25% of its territory is made up of jurisdictional waters and with a population of
approximately 360,000 inhabitants (ICMBIO, 2020).

Considering the hydrological, geological, pedological and geomorphological factors,
there are four landscape units within the EPA area: dune field, fluvial-marine plain, river plain
and coastal tablelands. The areas of the fluvial-marine plain are responsible for transporting
matter and energy carried by the rivers, tides, and rainfall that are so important for that system
(da Silva, 2020)

Although the area under study is located in representative areas of Cerrado and Caatinga
vegetation, it has a continuous system of mangroves, which help in the control of coastal erosion
and in the stabilization of fine sediments, hence reducing the capacity and competence of rivers
in the transport of sediments. The main mangrove species observed in the EPA area are: red
mangrove (Rhizophora mangle), white mangrove (Laguncularia racemosa), button mangrove
(Conocarpus erectus), ‘siriba’ or ‘sereiba’, black mangrove or ‘siriba’ mangrove and white
‘siriba’ (Avicennia germinans and Avicennia schaueriana) (Guzzi, 2012; Andrade et al., 2014;
Flora do Brasil, 2020; Nascimento, 2021).

Abreu et al. (2019) point out that the EPA area has a varied rainfall regime with isohyets
between 1000 and 1600 mm per year, which goes from January to May. From August to
November, lower rainfall indices are recorded, demonstrating that the monthly rainfall regime
has a unimodal distribution with minimum rainfall in August and maximum in April, and the
main atmospheric system acting in the region is the Intertropical Convergence Zone (ITCZ).
The main economic activity carried out in the study area is subsistence fishing, which involves
the collection of fish, crabs, shrimps, oysters and shellfish, family farming, animal husbandry
and the extractivism of seeds and fruits. It is worth mentioning that the EPA is also part of the
Route of Emotions tourist itinerary, which also covers the Jericoacoara National Park, in Ceara,

and the Lencgois Maranhenses National Park, in Maranhdo.
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Choice of sampling points to define the plots

The sampling points were defined based on a random stratified strategy, considering the
areas with greater representativeness in relation to vegetation structure. Maps were produced
using images from the orbital sensors of the Landsat-8 OLI (Operational Land Imager) and
RapidEye images as a way to better visualize the geographical area that corresponds to the EPA
area. To choose the points, the of mangrove vegetation was also spatialized by interpreting the
normalized difference vegetation index (NDVI), using the same strategy adopted by Portela et
al. (2020), sampling plots with variability for NDVI. Thus, 27 plots were installed (Figura 2),
each measuring 200 m2 (10x20), and all of which are representative of the mangrove vegetation.

Figure 2 - Map of distribution of plots in mangrove areas of the Parnaiba River Delta
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Procedures for field determination of AGB data

To determine the above-ground plant biomass (AGB), a survey on the characteristics of
the vegetation was carried out through a population census, collecting information regarding
the height of trees and diameter at breast height (DBH) of each individual. The AGB of the
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mangrove area of the EPA was calculated based on allometric equations for living vegetation
(Table 1), according to the species identified and adopted in other similar studies (Kauffman &
Donato, 2012; Portela et al., 2020; Nascimento, 2021).

Table 1 - Allometric equations used to determine living plant biomass in different
mangrove species

SPECIES | EQUATIONS | REFERENCES
Laguncularia recemosa Biom (kg)= 0,1023 X DBH 2° (Fromard et al., 1998)
Avicennia sp. Biom (kg)= 0,14 x DBH %* (Fromard et al., 1998)
Conocarpus erectus Biom (kg)= 0,1023 X DBH 2° (Fromard et al., 1998)

Rizophora sp. In (Biom. (kg)) = 14,867663 = (Santos et al., 2017)

0,5132 In (area basal 2 x H)
Other species (DBH 3>30 cm) Biom (kg) = 0,1730 x DBH,229%0 (Lima Janior et al.
2014)

To analysis the AGB of dead species standing or fallen within the plots, the equation
proposed by Fundacioén Solar (2000) was used in an adapted form. The litter biomass was
determined by the direct method (Fundacion Solar, 2000), where, in each plot, a 0.3 m?

circumference was randomly thrown three times, collecting all the material contained within it.

AGB estimation by remote sensing and machine learning

The analysis of spatial distribution of AGB by remote sensing was carried out using the
method proposed by Lu et al. (2005) and Lima Janior (2014) with adaptations, with extraction
and selection of spectral variables from images from the Landsat 8-9 OLI sensor, orbit/point
218/62 and the Sentinel-2 satellite. These data were correlated with the field biomass estimates,
because according to Naessens et al. (2012), in the process of calibration and validation of the
data, the model used is confronted with the field data and the prediction can be confirmed.

In the case of the Landsat 8-9 images, they were downloaded from the USGS (United
States Geological Survey) website and correspond to the dry season on 09/15/2018 and the
rainy season on 03/22/2023. It is important to highlight that both data were collected at Level-
2, taking into account the occurrence of atmospheric correction. Acquisition and pre-processing
of the Sentinel-2/MSI images were carried out on the GEE (Google Earth Engine) platform,
where the chosen historical series dates from August 1 to November 30, 2021, also with
atmospheric correction. Processing of the images and obtaining of the final products from the
methodological procedures were carried out using the following software programs: ESRI
ArcGIS® 10.3, QGIS and R Studio version 4.3.2 (R Core Team, 2020).
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After acquisition of the images, the bands B1, B2, B3, B4, B5, B6 and B7 (OLI) were
grouped in a single file called “Stack” in the statistical program R to perform a composition of
bands. The same procedure was performed for bands B2, B3, B4, B5, B6, B7, B8A, B11 and
B12 of Sentinel-2. From the bands, the following spectral indices were calculated based on the
literature by George et al. (2018), Tran, Ruth and Zuh (2022), Santos (2018) and Ramirez
(2015) serving as input data to estimate biomass: RVI, NDVI, EVI, NDWI, SAVI, GNDVI,
MNDWI, CTVI, CLAY and IRON (Table 2).

Table 2 - Representation of the equations used to determine spectral indices

INDICE | EQUATION | REFERENCES
Ratio Vigor Index (RVI) NIR Pearson e Miller (1972)
RVI = RED
Normalized Difference NDV| = MR-RED Rouse et al., (1973)
Vegetation Index (NDVI) NIR+RED
Soil-adjusted Vegetation SAV|= NMRZRED *(1+L) Huete (1988)
IndeX (SAVI) NIR+RED+L
Enhanced Vegetation EV]| = G( NIR—RED ) Huete et al., (1997)
|ndex (EV') NIR+C1*RED—-C2*BLUE+L
Normalized difference NDW| = SREEN-NIR Gao (1996)
water index (NDWI) GREEN+NIR
Green Normalized GNDV| = MRZGREEN Gitelson et al., (1996)
Difference VegetationIndex NIR+GREN
(GNDVI)
Modified Normalized Difference MNDW]| = SREEN=Swir2 Xu (2006)
Water Index GREEN+ Swir2
(MNDWI)
Corrected Transformed CTVI = WRVI+0S) . TNDVI + 5] Perry e Lautenschlager
Vegetation Index (CTVI) INDVI+5] (1984)
Clay Minerals (CLAY) CLAY = 24nNDAs Sabins (1997)
BANDA 7
Iron Oxide (IRON) IRON = REL Sabins (1997)

BLUE
Nota: NIR: Banda infravermelha préxima; RED: Faixa vermelha; GREEN: Faixa verde; BLUE: Faixa azul,

Swir2: Faixa infravermelha de onda curta (1400-1800nm); G: Fator de ganho = 2,5; L: Fator de corre¢do para
solo, onde foi utilizado o valor = 0,25 no indice SAVI e o valor = 1 no indice EVI; C1 e C2: Coeficientes de
ajuste para efeito de aerossol atmosférico, onde C1 =6 e C2 =7,5; As bandas 6 e 7 no calculo de Clay podem
variar dependendo do satélite (Landsat 8-9 ou Sentinel-2). Fonte: Adaptado de Portela, 2019; Amorim, 2019.

To calculate these indices, it was necessary to install the raster package through the
install.packages (“raster”) tool and use R software. For the predictive analysis, the following
machine learning algorithms were used: Multiple Linear Regression (MLR), Random Forest
(RF), XGBoost (XGB), Cubist (CB), Earth (ET) and Support vector machine (SVM - linear,
radial and polynomial), adapted from the literature, in order to test and investigate which model
had the best prediction performance.

In addition, it is worth mentioning that the models were tested using all variables (bands

and indices) and all algorithms were implemented through the Caret package. Prediction error
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was calculated by the leave-one-out cross-validation (LOOCV) methodology, as employed by
Jachoswi et al. (2013) and Selvaraj and Pérez (2023).

The performance of the estimates, i.e., how the algorithm is performing, was evaluated
using validation measures recommended by Whang et al. (2016) such as the coefficient of
determination (R?), root mean squared error (RMSE) and mean absolute error (MAE). In
addition to these statistical metrics, the evaluation of the models was performed through the
visual analysis of the scatter plots between the observed AGB values and the values predicted
by the models. After that, AGB was mapped for the entire study area, for models with better

performance and using R software.

RESULTS AND DISCUSSION

Estimation of mangrove biomass using field data and allometry

For the estimation of AGB in the field, through the survey of the species carried out in the 27
plots, it was possible to observe the presence of 626 individuals, distributed in four genera and five
species of mangrove: Rhizophora spp., Laguncularia racemose, Conocarpus erectus, Avicennia
germinans and Avicennia schaueriana. It is worth pointing out that these last two species were not
differentiated through taxonomic study and, for the estimation of AGB, they were considered only as
Avicennia spp. The same occurs with the genus Rhizophora spp.

In some plots, 23 individuals of species such as: Indigofera sp; Mauritia flexuosa L., Euterpe
oleracea Mart. and Genipa americana L. Totaling 649 individuals. It is also important to highlight that
the survey covers an area of 5,400 m? of a total of approximately 413 km? of mangrove areas included
in the PRD APA (MapBiomas Project, 2021). Through the (Figura 3) it is possible to observe the
biomass value found in each of the sampled plots.

Figure 3 shows a minimum of 8 Mg ha*, a maximum of 789 Mg ha™ and a mean of 258
Mg ha. Similar data were also found by Jachowski et al. (2013), who estimated the plant
biomass of mangroves in southwestern Thailand and found an average value of 250 Mg ha™.
These data are higher than those reported by Wong et al. (2020), who found average AGB of

about 197 Mg ha! in northern Malaysia.
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Figure 3 - Distribution of above-ground biomass stock observed in the field in different plots. Plot of
Rizophorasp.-1,2,3,4,5,8,9, 11, 12, 16, 17, 21, 23; Plots of Rizophora sp. and Avicennia spp. — 7,
10, 13, 14, 19, 20; Plots of Rizophora sp. and L. racemosa - 15, 22; C. erectus plots - 6, 24, 25;

Avicennia spp. - 18; Plot of L. racemosa and Avicennia spp. — 26.
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Fonte: Os autores (2024).

(2018) in their studies concluded that a semi-arid community in northwestern Australia
contained an average of 70 Mg ha of AGB. Tian et al. (2022), when evaluating the AGB of
mangroves in a subtropical estuary of the Maoling River, Guangxi, China, observed that the
AGB of the invasive mangroves showed a high spatial distribution pattern in the northwest and
low spatial distribution pattern in the southeast, and its value ranged from 7 Mg ha* to 114 Mg
ha*, with an average of 26 Mg ha*. Fujimoto et al. (2022), in a study conducted in the mangrove
forests of Micronesia, observed that, in the Rhizophora stylosa community characterized by
stilt roots, the highest AGB was estimated at 895 Mg ha*, a value considered the highest of all
existing data from terrestrial survey in the tropics. Through this study it can be observed that
tropical areas also present relevant values and averages of AGB in mangroves.

In Brazil, estimates of blue carbon stocks do not include the entire area of mangroves
present, but studies such as the one conducted by Bernadino et al. (2024) reveal an estimate of
AGB in a portion of the mangrove vegetation in the Amazon ranging from 29 to 335 Mg C ha’
! Kalffman et al. (2018), in turn, found a mean AGB value of 290 Mg ha™! for the Amazon
region. Santos and Beltrdo (2019) estimated and compared AGB on Ajuruteua lIsland,
Braganca, PA, in 2008 and 2018, and found values of approximately 451 Mg ha™* for 2008 and
290 Mg ha™ for 2018, which points to a reduction of approximately 35.7% in biomass between
2008 and 2018.
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Portela et al. (2020) point out that the evergreen mangrove vegetation in the Parnaiba
River Delta had the highest mean value for plant biomass, 517.43 Mg ha. Braga et al. (2024),
when estimating AGB in the mangrove forest of the Pacoti River, in the State of Ceara, found
that 16.60 tons were stored in the 1,119 plants analyzed. The species with the highest amount
of biomass was Rhizophora mangle, which accounted for about 71% of the total mass found.

The plot under study with the highest value of AGB (plot 11) has 12 predominant
individuals of the same genus (Rizophora sp.), mean diameter of 35 cm and mean height of
13.33 m, indicating greater biomass in species that have larger diameters, as observed in the
boxplot (Figura 4) through the maximum, minimum, mean and standard deviation values
presented. This result was also observed by Pinto et al. (2017), who analyzed the sequestration
of atmospheric carbon in the mangrove forest of the EPA of Serra do Guararu, in Sdo Paulo,
and pointed out that the carbon stored in the form of biomass is directly proportional to DBH.

Similar data were also presented by Fontoura et al. (2017), who observed biomass
variations between the compartments of the mangrove vegetation, according to the increase in
DBH. In the study area, the number of individuals and height were also important attributes in
the composition of AGB.

Figure 4 - Boxplot of different values of maximum, minimum, mean and standard deviation in the
mangrove plots of Parnaiba River Delta Environmental Protection Area. (a) DHP values, (b) height
values, (c) biomass values
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Fonte: Os autores (2024).

By observing these data, it was possible to confirm that the highest biomass estimates
are associated with Rizophora sp. and Avicennia spp., since both reached values above 700 Mg
ha*. These species, represented in plots 11 and 19, also had in some individuals DBH of 77.67
cm for Rizophora sp. (plot 11) and maximum height of the individuals of 20 m and DBH of

80.85 cm for Avicennia spp. (plot 19), with mean of 34.14 cm, maximum height of 40 m reached

in their individuals and mean of 24.23 m (Figura 5).
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Figure 5 - A: Representation of the species Rizophora sp.; B: Representation of Avicennia
Spp

Fonte: Os autores (2024).

Plots 25, 15 and 24 were the ones with the lowest biomass values compared to the others,
respectively 8 Mg ha?, 23 Mg ha® and 38 Mg ha™. These plots, in turn, have a mean DBH
ranging from 7.41 cmto 8 cm and mean height ranging from 4 mto 9.22 m. Two of these plots
(24 and 25) together with plot 6 are representative of C. erectus and have mostly crooked and

thin trunks and branches (Figura 6).

Figura 6 - Diameter measuring the height of the breast of the representative portion of Conocarpus
erectus; B: fruit of the species Conocarpus erectus

»

et (b)

Fonte: Os autores (2024).

C. erectus has greenish flowers and gray or brown bark. They occupy elevated portions

of the terrain and are rarely hit by the tides. They are also considered species that have the
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highest resistance among mangrove woods and were widely used for the manufacture of
shipbuilding parts and firewood production (ICMBIO, 2018).

It is worth mentioning that, in the study area, these species were only found in
mangroves that comprise the East side of the PRD EPA area, with plots 6 and 24 installed in
the municipality of Cajueiro da Praia, PI, and plot 25 in the municipality of Barroquinha, CE.
In mangrove forests in southeastern Mexico, AGB was higher in this species (C. erectus)
(253.18+32.17 Mg-ha™) and lower in other species, such as A. germinans (161.93+12.63 Mg
ha). This occurred because the species C. erectus grew on more elevated terrains in the region,
where soils were richer in nutrients (Santos et al. 2014).

Avicennia spp. only occurred predominantly in plot 18 and had AGB value of 79 Mg
ha*, while L. racemosa vegetation was mixed with other species, in three plots (15, 22 and 26),
thus contributing to the biomass estimate.

Based on the survey carried out and the species found, it can be highlighted that the
species R. mangle is responsible for 75% of the AGB produced, followed by Avicennia spp.
with approximately 19%, C. erectus with 4% and L. racemosa with 2%. In addition, the
variation of biomass in the analyzed plots is directly linked to the changes in the variables
involved in the allometric equations presented in this study. Therefore, it can be seen that the
oscillation of biomass throughout the area is also linked to the different species of mangrove

and their characteristics.

Estimation of mangrove biomass using Landsat 8-9/0OLI and Sentinel-2/MSI remote

sensing images and machine learning.

For biomass estimation using Landsat 8-9 and Sentinel-2 remote sensing images, the
biomass obtained in the field was considered a dependent variable and the reflectance values
(bands) and spectral indices derived from the images were considered independent variables.
Once all the covariates were selected, it was possible to evaluate the most important ones
presented by the ML models in R software. When the most important variables for the model

resulted in better validation, these models were presented (Table 3).
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Table 3 — Erros estatisticos de predigdo calculados para cada modelo representando a AGB de
bosques de mangue da APA do Delta de Parnaiba, PI com imagens do Landsat 8-9 e Sentinel-2

Machine Variables RMSE MAE R? Max. Min.
Learning Model explanatory (Mg/ha) (Mg/ha)
Landsat -8/ OLI
Random Forest B2 + NDWI+ B1 + B3 107.24 87.36 0.86 522.43 73.33
+ IRON+B4
Random Forest All 110.37 88.25 0.86 520.10 80.51
XGBoost All 66.74 49.42 0.93 677.29  20.04
Regressdo Linear All 134.31 89.92 0.61 676.97 -2.16
Multipla
Cubist All 207.3 147.3 0.16 287.44 75.29
Regresdo Earth All 196.46 157.06 0.17 312.64 -27.2
SVM Linear All 195.77 129.29 0.20 44153  -13.83
SVM Radial All 169.98 96.94 0.48 453.63 30.07
SVM Polinomial All 206.65 144.43 0.18 266.39 30.12
Landsat - 9/ OLI
Random Forest B2+B3+B4+B5+IRON 107.86 84.7 0.87 - -
+CLAY
Random Forest All 115.47 93.57 0.85 502.55 82.14
XGBoost All 84.20 60.24 0.88 639.16 2.21
Regressdo Linear All 134.78 97.42 0.61 652.42  -50.41
Multipla
Cubist All 200.86 148.98 0.17 310.35 105.63
Regresdo Earth All 197.56 159.44 0.16 306.56  -1.29
SVM Linear All 197.46 130.66 0.22 368.41 -65.06
SVM Radial All 152.21 87.92 0.56 - -
SVM Polinomial All 201.51 132.33 0,20 - -
Sentinel -2 /MSI
Random Forest B5 +B11+ IRON+ 100.09 71.87 0.86 552.63 56.2
EVI+B12+ B8A
Random Forest All 99,32 69.51 0.88 539.07 61.29
XGBoost All 71.89 51.58 0.92 695.23 32.65
XGBoost B5+B4+B6+ B11 + 64.02 46.31 0.92 716.53 41.17
B3 +IRON

Fonte: Os autores (2024).

Knowing that ML algorithms are used with the objective of estimating and minimizing
the reducible error, it can be observed in Table 2 that the best model trained for AGB estimation,
using all covariates, was that obtained with XGB during the dry season with Landsat-8 images,
showing very good values of validation and maximum and minimum. XGB was also the best
model when using Landsat-9 data from the rainy season, with very good performance.

In relation to the MSI sensor, the XGB model also showed a very strong performance,
using all the variables and also taking into account the important variables. In the selection,
lower MAE and RMSE values were obtained when compared to the OLI sensor, which can be
explained by the higher spatial resolution compared to the Landsat 8-9 images (10 m and 30
m); however, all predictions produced strong fits, emphasizing the quality of ML modeling
(Figura 7 and Table 3).
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Figure 7 - Validagdo cruzada dos valores de AGB usando diferentes dados de sensores remoto
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Fonte: Os autores (2024).

The distribution of most of the points around the trend line confirms the ability of the
XGB model to predict with a high degree of accuracy the AGB of the mangroves in the study
area. However, our results showed only a slight difference in prediction performance between
the XGB and RF models. RF had excellent performance and fit in the class of very strong fit,
which can also be confirmed by the studies conducted by Askne et al. (2017) in northern
Sweden, Tian et al. (2021) in the Beibu Gulf, David et al. (2022) in Chobe National Park,
Botswana, and Fararoda et al. (2021) in forests of India.

Li et al. (2020), when estimating the biomass of subtropical forests in Hunan Province,
China, observed that after performing parameter fitting, there was a significant effect on the
performance of the XGB algorithm compared to RF and after fitting, the R? of the XGB model
achieved the best results (R = 0.75).

Tian et al. (2021) used eight ML models to estimate the AGB of different mangrove

species in the Beibu Gulf and also compare their accuracy. The best fit model found by the


https://periodicos.ufpi.br/index.php/revistaequador

Revista Equador (UFPI), Vol. 14, N° 1, Ano 2025, p. 301-327.
Home: https://periodicos.ufpi.br/index.php/revistaequador

authors, as well as in the study carried out, was also the XGB, with R? = 0.83 and RMSE =
22.76 Mg ha't, followed by the RF model (R? = 0.78, RMSE = 25.51 Mg ha?).

Luo et al. (2021), when comparing the performance of different combinations of
resource selection methods and algorithms, observed that the XGB model also showed an
excellent performance in the estimation of AGB, with RMSE of 28.81 Mg ha™.

It is also worth mentioning that the other models presented in Table 1 were tested, but
were not successful, showing low coefficient of determination with the remote sensing data
variables for the Landsat 8-9 images and increasingly high errors, providing no explanations
for the research data, except for the MLR model, which had Rz = 0.61 in the Landsat 8-9 images
with a moderate fit. Thus, due to the poor performance of the other models, only the XGB and
RF models were fitted for the Sentinel-2 images.

The results also reveal that, among the fitted models, the correlation between AGB and
the oxide index indicated that more hydromorphic soils, with few oxides, result in higher values
of AGB. For Sentinel-2, band 5 (Vegetation Red Edge 1) played a major role in the estimation
of AGB, which was also identified by (Astola et al., 2019).

Da Silva et al. (2021), when analyzing the potential of Sentinel-2 images in estimating
the biomass of Tectona grandis L.f. in the Western Amazon, found that Sentinel-2 images are
accurate and useful for monitoring forest biomass. Pandit et al. (2018), when estimating AGB
in protected forest areas in Nepal, pointed out that in these areas the problem of multispectral
data saturation due to the large amount of biomass is common, but the Sentinel-2 data were able
to overcome this problem due to the high spatial resolution and red-edge bands of the MSI
sensor, which reinforces its capacity and effectiveness in biomass estimates.

Dang et al. (2019), when estimating AGB in Yok Don National Park, Vietnam, using
ML, observed that in validation, the RF model developed with 11 variables was able to predict
AGB with Rz = 0.81, RMSE = 36.67 Mg ha and RMSE = 19.55% using both Landsat and
Sentinel-2 images.

The results found in the present study demonstrated exactly the same; the two sensors
acted with great potential, and in the dry season this estimate is more representative, with this
model, since, according to (Fitz, 2008), the decrease in the amount of water causes degradation
of the photosynthetic pigments, making the leaf less likely to absorb electromagnetic radiation,
which in turn will result in increased reflectance values by the sensors. Thus, as the moisture of

the leaf decreases, the reflectance power in the infrared increases, proving the results found.
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The map (Figura 8) shows the final result of the estimation of AGB of the PRD EPA
mangrove through the Landsat 8-9 and Sentinel-2 satellites. On the maps, it is possible to
observe variability of biomass and spatial distribution.

Thus, it can be observed that for the two sensors and seasons (dry and rainy) there is a large
spatial correlation that coincides, where areas that correspond to the northwest of the
municipality of Araioses, MA, northwest region of the municipality of Ilha Grande, PI, areas
close to the Parnaiba River and a good part of the mangroves located in Barroquinha, CE, are
the ones with the highest estimates of AGB, since the indices and bands show a higher spectral
reflectance in the near-infrared region, resulting in a greater interaction of the incident energy.

Figure 8 - AGB estimation map in APA DPHB mangrove areas using different sensors and machine
learning. (a): XGBoost model using Landsat-8 imagery, (b): XGBoost model using Landsat-9
imagery, (c): XGBoost model using Sentinel-2 images
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Fonte: Os autores (2024).

In addition, most of them are areas close to the mouth of rivers, where there is a large
input of sediments and consequent production of nutrients that can contribute to a higher
production of AGB. It can be observed that the model brought an estimate very close to the

observed value, predicting biomass values of approximately 800 Mg ha™.
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CONCLUSION

The estimation and spatialization of AGB in the mangroves of the study area, through
remote sensing and machine learning, was efficient and indicated low uncertainty in the
estimates.

The fitted models indicated good performances of OLI and MSI sensors in AGB
estimation. The XGB model fitted better to the data from the two sensors, but obtained better
accuracy during the dry season, with R2 = 0.93, RMSE = 66.74 Mg ha* and MAE = 49.42 Mg
ha. It is worth pointing out that the Landsat-9 and Sentinel-2 images also produced excellent
results, indicating a strong fit according to the literature, which highlights the quality that can
be obtained from freely available images. Due to the higher spatial resolution of Sentinel-2, this
sensor can be considered as the most suitable and reliable in AGB mapping.

The RF model also showed very strong fit results, especially when using Sentinel-2
images, representing the best fit of this model, with Rz = 0.88 when using all variables, which
can probably be explained by its better spatial resolution compared to the Landsat images.
These results suggest that the XGB and RF regression models generated have a satisfactory
capacity to predict the AGB of the Parnaiba River Delta EPA, providing the basis for the

planning of the relevant forestry decision-making departments.
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